我们提供了一个用于计算字符串压缩空间的指标的新机器学习库。我们将Monte-Carlo采样积分的性能进行基准,针对先前的数值近似,发现我们的神经网络更加采样和计算效率。我们是第一个提供计算Compact空间的任意,用户指定的形状和大小参数的这些度量的可能性,并观察我们正在训练和消失Ricci曲率的局部微分方程的优化之间的线性关系。
translated by 谷歌翻译
我们越早努力计算Calabi-yau歧管的切线空间协调尺寸的努力使用深度学习。在本文中,我们考虑所有Calabi-yau四折的数据集,构建为投影空间的产品中的完整交叉点。采用最先进的计算机视觉架构启发的神经网络,我们改进了早期的基准,并证明所有四个非琐碎的霍奇格数可以使用多任务架构同时学习。30%(80%)培训率,我们达到$ H ^ {(1,1)} $的准确性为100%,以H ^ {(2,1)} $(两者为100%),81%(96%)为$ h ^ {(3,1)} $,49%(83%)为$ h ^ {(2,2)} $。假设欧拉数是已知的,因为它易于计算,并且考虑到从指数计算引起的线性约束,我们得到100%的总精度。
translated by 谷歌翻译
This short report reviews the current state of the research and methodology on theoretical and practical aspects of Artificial Neural Networks (ANN). It was prepared to gather state-of-the-art knowledge needed to construct complex, hypercomplex and fuzzy neural networks. The report reflects the individual interests of the authors and, by now means, cannot be treated as a comprehensive review of the ANN discipline. Considering the fast development of this field, it is currently impossible to do a detailed review of a considerable number of pages. The report is an outcome of the Project 'The Strategic Research Partnership for the mathematical aspects of complex, hypercomplex and fuzzy neural networks' meeting at the University of Warmia and Mazury in Olsztyn, Poland, organized in September 2022.
translated by 谷歌翻译
Self-supervised learning is a popular and powerful method for utilizing large amounts of unlabeled data, for which a wide variety of training objectives have been proposed in the literature. In this study, we perform a Bayesian analysis of state-of-the-art self-supervised learning objectives and propose a unified formulation based on likelihood learning. Our analysis suggests a simple method for integrating self-supervised learning with generative models, allowing for the joint training of these two seemingly distinct approaches. We refer to this combined framework as GEDI, which stands for GEnerative and DIscriminative training. Additionally, we demonstrate an instantiation of the GEDI framework by integrating an energy-based model with a cluster-based self-supervised learning model. Through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, we show that GEDI outperforms existing self-supervised learning strategies in terms of clustering performance by a wide margin. We also demonstrate that GEDI can be integrated into a neural-symbolic framework to address tasks in the small data regime, where it can use logical constraints to further improve clustering and classification performance.
translated by 谷歌翻译
State-of-the-art performance in electroencephalography (EEG) decoding tasks is currently often achieved with either Deep-Learning or Riemannian-Geometry-based decoders. Recently, there is growing interest in Deep Riemannian Networks (DRNs) possibly combining the advantages of both previous classes of methods. However, there are still a range of topics where additional insight is needed to pave the way for a more widespread application of DRNs in EEG. These include architecture design questions such as network size and end-to-end ability as well as model training questions. How these factors affect model performance has not been explored. Additionally, it is not clear how the data within these networks is transformed, and whether this would correlate with traditional EEG decoding. Our study aims to lay the groundwork in the area of these topics through the analysis of DRNs for EEG with a wide range of hyperparameters. Networks were tested on two public EEG datasets and compared with state-of-the-art ConvNets. Here we propose end-to-end EEG SPDNet (EE(G)-SPDNet), and we show that this wide, end-to-end DRN can outperform the ConvNets, and in doing so use physiologically plausible frequency regions. We also show that the end-to-end approach learns more complex filters than traditional band-pass filters targeting the classical alpha, beta, and gamma frequency bands of the EEG, and that performance can benefit from channel specific filtering approaches. Additionally, architectural analysis revealed areas for further improvement due to the possible loss of Riemannian specific information throughout the network. Our study thus shows how to design and train DRNs to infer task-related information from the raw EEG without the need of handcrafted filterbanks and highlights the potential of end-to-end DRNs such as EE(G)-SPDNet for high-performance EEG decoding.
translated by 谷歌翻译
In-context learning (ICL) enables large language models (LLMs) to perform new tasks by prompting them with a sequence of training examples. However, ICL is very sensitive to the choice of training examples: randomly sampling examples from a training set leads to high variance in performance. In this paper, we show that curating a carefully chosen subset of training data greatly stabilizes ICL performance. We propose two methods to choose training subsets, both of which score training examples individually and then select the highest-scoring ones. CondAcc scores a training example by its average ICL accuracy when combined with random training examples, while Datamodels learns a linear proxy model that estimates how the presence of each training example influences LLM accuracy. On average, CondAcc and Datamodels outperform sampling from the entire training set by 7.7% and 6.3%, respectively, across 5 tasks and two LLMs. Our analysis shows that stable subset examples are no more diverse than average, and are not outliers in terms of sequence length and perplexity.
translated by 谷歌翻译
Many real-world reinforcement learning tasks require control of complex dynamical systems that involve both costly data acquisition processes and large state spaces. In cases where the transition dynamics can be readily evaluated at specified states (e.g., via a simulator), agents can operate in what is often referred to as planning with a \emph{generative model}. We propose the AE-LSVI algorithm for best-policy identification, a novel variant of the kernelized least-squares value iteration (LSVI) algorithm that combines optimism with pessimism for active exploration (AE). AE-LSVI provably identifies a near-optimal policy \emph{uniformly} over an entire state space and achieves polynomial sample complexity guarantees that are independent of the number of states. When specialized to the recently introduced offline contextual Bayesian optimization setting, our algorithm achieves improved sample complexity bounds. Experimentally, we demonstrate that AE-LSVI outperforms other RL algorithms in a variety of environments when robustness to the initial state is required.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
In this paper, we present strong baselines for the task of Feedback Comment Generation for Writing Learning. Given a sentence and an error span, the task is to generate a feedback comment explaining the error. Sentences and feedback comments are both in English. We experiment with LLMs and also create multiple pseudo datasets for the task, investigating how it affects the performance of our system. We present our results for the task along with extensive analysis of the generated comments with the aim of aiding future studies in feedback comment generation for English language learners.
translated by 谷歌翻译
Foundation models can be disruptive for future AI development by scaling up deep learning in terms of model size and training data's breadth and size. These models achieve state-of-the-art performance (often through further adaptation) on a variety of tasks in domains such as natural language processing and computer vision. Foundational models exhibit a novel {emergent behavior}: {In-context learning} enables users to provide a query and a few examples from which a model derives an answer without being trained on such queries. Additionally, {homogenization} of models might replace a myriad of task-specific models with fewer very large models controlled by few corporations leading to a shift in power and control over AI. This paper provides a short introduction to foundation models. It contributes by crafting a crisp distinction between foundation models and prior deep learning models, providing a history of machine learning leading to foundation models, elaborating more on socio-technical aspects, i.e., organizational issues and end-user interaction, and a discussion of future research.
translated by 谷歌翻译